SIMPANGAN RATA-RATA, RAGAM DAN SIMPANGAN BAKU

 SIMPANGAN RATA-RATA, RAGAM

DAN STANDAR DEVIASI


SIMPANGAN RATA-RATA 

Pengertian Simpangan rata-rata atau (deviasi mean) ialah merupakan suatu  jarak antara nilai-nilai data menuju rata-ratanya.

Simpangan rata-rata yang dinotasikan sebagai SR. termasuk ke dalam ukuran penyebaran data seperti halnya Varian dan Standar Deviasi. Kegunaannya ialah untuk mengetahui seberapa jauh nilai data yang telah menyimpang dari rata-rata yang sebenarnya.

Rumus Simpangan Rata-Rata

Sekumpulan data kuantitatif yang tidak dikelompokkan serta dinyatakan oleh x1, x2, …, xn. Dari data tersebut dapat ditentukanlah simpangan rata-rata (SR) dengan menggunakan sebuah rumus sebagai berikut:

Rumus-simpangan-rata-rata

Contoh 1:

Diberikan data sebagai berikut:

5, 6, 8, 5, 7Tentukan nilai SR data di atas!

Pembahasan
Langkah awal terlebih dulu temukan rata-rata datanya:simpangan-rata-rataSetelah diketahui rata-ratanya, saatnya mencari SR:

.simpangan-rata-rata
.

Sehingga nilainya

  • SR = | 5-6,2|+|6-6,2|+8 -6,2|+ |5 -6,2|+|7 -6,2| / 5
  • SR = 1,2 +0,2 +1,8 +1,2 +0,8/5 = 5,2/5 =1,04



Contoh 2 :

Perhatikan tabel distribusi frekuensi data dibawah ini

NilaiFrekuensi
11 – 15
16 – 20
21 – 25
26 – 30
31 – 35
2
2
10
9
4

Tentukan nilai SR data di atas!

Pembahasan
Temukan terlebih dulu titik tengah setiap kelas, untuk kemudian dicari reratanya:

NilaiFrekuensix
11 – 15
16 – 20
21 – 25
26 – 30
31 – 35
2
2
10
9
4
13
18
23
28
33

Rata-ratanya ialah:

simpangan-rata-rata
.

Dengan rumus yang sama soal sebelumnya saja,

simpangan-rata-rata
.

tapi dipake titik tengah kelas sebagai x diperoleh:

simpangan-rata-rata


RAGAM (VARIAN) DAN SIMPANGAN BAKU (STANDAR DEVIASI)

Varian dan standar deviasi (simpangan baku) adalah ukuran-ukuran keragaman (variasi) data statistik yang paling sering digunakan. Standar deviasi (simpangan baku) merupakan akar kuadrat dari varian.

s=\sqrt{s^2}Oleh karena itu, jika salah satu nilai dari kedua ukuran tersebut diketahui maka akan diketahui juga nilai ukuran yang lain.

Penghitungan
Dasar penghitungan varian dan standar deviasi adalah keinginan untuk mengetahui keragaman suatu kelompok data. Salah satu cara untuk mengetahui keragaman dari suatu kelompok data adalah dengan mengurangi setiap nilai data dengan rata-rata kelompok data tersebut, selanjutnya semua hasilnya dijumlahkan.

Namun cara seperti itu tidak bisa digunakan karena hasilnya akan selalu menjadi 0.
Oleh karena itu, solusi agar nilainya tidak menjadi 0 adalah dengan mengkuadratkan setiap pengurangan nilai data dan rata-rata kelompok data tersebut, selanjutnya dilakukan penjumlahan. Hasil penjumlahan kuadrat (sum of squares) tersebut akan selalu bernilai positif.


Nilai varian diperoleh dari pembagian hasil penjumlahan kuadrat (sum of squares) dengan ukuran data (n).


Namun begitu, dalam penerapannya, nilai varian tersebut bias untuk menduga varian populasi. Dengan menggunakan rumus tersebut, nilai varian populasi lebih besar dari varian sampel.

Oleh karena itu, agar tidak bias dalam menduga varian populasi, maka n sebagai pembagi penjumlahan kuadrat (sum of squares) diganti dengan n-1 (derajat bebas) agar nilai varian sampel mendekati varian populasi. Oleh karena itu rumus varian sampel menjadi: 


Nilai varian yang dihasilkan merupakan nilai yang berbentuk kuadrat. Misalkan satuan nilai rata-rata adalah gram, maka nilai varian adalah gram kuadrat. Untuk menyeragamkan nilai satuannya maka varian diakarkuadratkan sehingga hasilnya adalah standar deviasi (simpangan baku).


Untuk mempermudah penghitungan, rumus varian dan standar deviasi (simpangan baku) tersebut bisa diturunkan :

Rumus varian (ragam):


Rumus standar deviasi (simpangan baku) :


Keterangan:
s2 = varian
s = standar deviasi (simpangan baku)
xi = nilai x ke-i
 = rata-rata
n = ukuran sampel


Contoh:

Misalkan dalam suatu kelas, tinggi badan beberapa orang siswa yang dijadikan sampel adalah sebagai berikut. 

172, 167, 180, 170, 169, 160, 175, 165, 173, 170

Dari data tersebut diketahui bahwa jumlah data (n) = 10, dan (n - 1) = 9. Selanjutnya dapat dihitung komponen untuk rumus varian.


Dari tabel tersebut dapat ketahui:

 

Dengan demikian, jika dimasukkan ke dalam rumus varian, maka hasilnya adalah sebagai berikut.


Dari penghitungan, diperoleh nilai varian sama dengan 30,32.

Dari nilai tersebut bisa langsung diperoleh nilai standar deviasi (simpangan baku) dengan cara mengakarkuadratkan nilai varian.

SIMPANGAN RATA-RATA, RAGAM DAN SIMPANGAN BAKU SIMPANGAN RATA-RATA, RAGAM DAN SIMPANGAN BAKU Reviewed by TARBIYAH SYAMILAH on 10:45 PM Rating: 5

No comments:

Powered by Blogger.